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Figure 3.13: People’s ability to identify whether news articles are model-generated (measured by the ratio of correct
assignments to non-neutral assignments) decreases as model size increases. Accuracy on the outputs on the deliberately-
bad control model (an unconditioned GPT-3 Small model with higher output randomness) is indicated with the dashed
line at the top, and the random chance (50%) is indicated with the dashed line at the bottom. Line of best fit is a power
law with 95% confidence intervals.

Mean accuracy
95% Confidence
Interval (low, hi)

t compared to
control (p-value)

“I don’t know”
assignments

Control 88% 84%–91% - 2.7%
GPT-3 175B 52% 48%–57% 12.7 (3.2e-23) 10.6%

Table 3.12: People’s ability to identify whether ⇠ 500 word articles are model generated (as measured by the ratio of
correct assignments to non-neutral assignments) was 88% on the control model and 52% on GPT-3 175B. This table
shows the results of a two-sample T-Test for the difference in mean accuracy between GPT-3 175B and the control
model (an unconditional GPT-3 Small model with increased output randomness).
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Human detection of AI-generated article
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What’s the paper that talked about 
the risks of foundation models?

The paper you are referring to is  
“On the Opportunities and Risks of 
Foundation Models” by researchers 
at OpenAI. 

This paper discusses the challenges, 
risks, and opportunities associated with 
the development and deployment of 
large-scale AI models, such as GPT-3. 
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Crowdsourced truth

- What color is the flower? 
- Yellow

???

“On the Opportunities 
and Risks of Foundation 
Models” by OpenAI.

Human evaluation defines truth for AI
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Move 37

???

Human evaluation defines truth for AI

Move 37

100+ moves later
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Legal argumentsFormal proofs

a2 + b2 = c2

Explanation informs human decision
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Explanation as a truth-finding process



A process to gather additional information to 
support human evaluation of AI outputs.
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Explanation as a truth-finding process

Fixed 
algorithm

Another 
neural net

Single- or 
multi-turn
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Capability 
assessment

Human-AI 
collaboration

Training 
future AIs

Training AI to explain itself
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2. How can AI learn to explain better?

1. Can AI explain by mimicking human?

ML

ACL 19 NAACL 21 IUI 19

EMNLP 22

EMNLP 18, 19, 22

TACL 19 ICLR 23ICML 19, 21 TMLR 23

Training AI to explain itself
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Q1: What color is the flower ? 
A1: Yellow 

How do humans explain? 
By identifying difference makers
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Q1: What color is the flower ? 
A1: Yellow 

Q2: What color is the flower ? 
A2: Yellow / black / green / white 

How do humans explain? 
By identifying difference makers
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Q1: What color is the flower ? 
A1: Yellow 

Q2: What color is the flower ? 
A2: Yellow / black / green / white 

Q3: What color is the flower ? 
A3: Yellow

How do humans explain? 
By identifying difference makers

Difference makers lead to large delta



23

What color is the flower ? Yellow (0.827) 
What color is the flower ? Yellow (0.715) 

Importance := delta in AI output



24

What color is the flower ? Yellow (0.827) 
What color is the flower ? Yellow (0.715) 
What color is the flower ? Yellow (0.530) 

Importance := delta in AI output



25

What color is the flower ? Yellow (0.827) 
What color is the flower ? Yellow (0.715) 
What color is the flower ? Yellow (0.530) 
What color is the flower ? Yellow (0.820) 

Importance := delta in AI output



26

What color is the flower ? Yellow (0.827) 
What color is the flower ? Yellow (0.715) 
What color is the flower ? Yellow (0.530) 
What color is the flower ? Yellow (0.820) 
What color is the flower ? Yellow (0.826) 
What color is the flower ? Yellow (0.700) 

Importance := delta in AI output



27

What color is the flower ? Yellow (0.827) 
What color is the flower ? Yellow (0.715) 
What color is the flower ? Yellow (0.530) 
What color is the flower ? Yellow (0.820) 
What color is the flower ? Yellow (0.826) 
What color is the flower ? Yellow (0.700) 

What color is the flower ?

Importance := delta in AI output 
Seems to capture necessity
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What color is the flower ? Yellow 0.827

What color is flower ? Yellow 0.827

What color flower ? Yellow 0.825

color flower ? Yellow 0.702

flower ? Yellow 0.819

• Unjustifiable confidence
• Inconsistent

Importance := delta in AI output 
How about sufficiency?
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SQuAD

Context In 1899, John Jacob Astor IV invested $100,000 for
Tesla to further develop and produce a new lighting
system. Instead, Tesla used the money to fund his
Colorado Springs experiments.

Original What did Tesla spend Astor’s money on ?
Reduced did

Confidence 0.78 ! 0.91

VQA

Original What color is the flower ?
Answer yellow
Reduced flower ?

Confidence 0.827 ! 0.819

SNLI

Premise Well dressed man and woman dancing in the street
Original Two man is dancing on the street
Answer Contradiction
Reduced dancing

Confidence 0.977 ! 0.706

SQuAD

Context In 1899, John Jacob Astor IV invested $100,000 for
Tesla to further develop and produce a new lighting
system. Instead, Tesla used the money to fund his
Colorado Springs experiments.

Original What did Tesla spend Astor’s money on ?
Reduced did

Confidence 0.78 ! 0.91

VQA

Original What color is the flower ?
Answer yellow
Reduced flower ?

Confidence 0.827 ! 0.819

SNLI

Premise Well dressed man and woman dancing in the street
Original Two man is dancing on the street
Answer Contradiction
Reduced dancing

Confidence 0.977 ! 0.706

Seems odd. Does it generalize?



All Examples are Drastically Reduced

I Run input reduction for entire validation set.

I Keep model prediction the same.

I Consistently reduce examples to very short lengths without
changing the model prediction.

I But how about the confidence?

Many more QA and RC tasks 
ElMo, BERT, GPT 
LIME, Gradient, IntGrad

Pathological high confidence on uninformative inputs

Generalizes across:

All Examples are Drastically Reduced

I Run input reduction for entire validation set.

I Keep model prediction the same.

I Consistently reduce examples to very short lengths without
changing the model prediction.

I But how about the confidence?

All Examples are Drastically Reduced

I Run input reduction for entire validation set.

I Keep model prediction the same.

I Consistently reduce examples to very short lengths without
changing the model prediction.

I But how about the confidence?
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What color is the flower ? Yellow 0.827

What color is flower ? Yellow 0.827

What color flower ? Yellow 0.825

color flower ? Yellow 0.702

flower ? Yellow 0.819

Removing unimportant feature 
leads to big delta in importance
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Model says Plausible Model says Implausible
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What  is the flower?What color is  flower?

 flower?

Model says Plausible Model says Implausible
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What  is the flower?What color is  flower?
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 color  flower? flower?

Model says Plausible Model says Implausible
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1. If models have these pathologies, we cannot 
expect reasonable explanations with this method. 

2. It’s expected that models have these issues.     
We argue that the intuitive way to extract 
explanations doesn’t work with these models. 

3. Reduced example is a caricature.   
Generalization to OOD is always hard. 

4. It is indeed partly an issue of post-hoc method.

What did we learn?
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Our intuitive notion of importance has 
complex mathematical implications—
properties that humans might satisfy but 
AIs might not.

What did we learn?
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EMNLP 18     ICML 211. Pathological high confidence 

2. Poor consistency across counterfactuals

What did we learn?

ICML 19
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What’s next?

1. Psychological 
expectation

2. Mathematical 
formulation

3. Validate AI & 
design solutions
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EMNLP 19

Racist response

Trigger

NAACL 21

What’s next?
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v.s.

• Humans cannot explain AI yet. 

• AI explaining itself requires non-trivial 
extrapolation beyond human capability.

What’s next?

How can AIs learn to explain better?
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Plausible Implausible

How can the applicant improve?
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Country of originExperience, Role

How can the applicant improve?
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How can the applicant improve?

> 25 years old
Be two years younger

Plausible Implausible
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How can the applicant improve?

Get a masters degreeGet a masters degree

Plausible Implausible
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How can the applicant improve?

Get a masters degree
Currently: bachelor

Get a masters degree
Currently: high-school

Plausible Implausible
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Explanation 
Algorithmic

Interpretation 
Neurobiological

Learning to explain better

Explanation is highly contextual. 
Full context isn’t available.

e plan: 
1. Model the interpretation process. 
2. Learn from feedback, not demonstration.
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Learning to explain better

What would        model?
1. Form of explanation 
2. Level of details 
3. Persuasiveness 
…
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Learning to explain better

What would        model?
1. Form of explanation 
2. Level of details

Online adaptation to real human users!



64

Novice AI Expert Novice+AI Expert+AI

Designing the testbed 
Goal: better human-AI performance

Goal

Dream
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Designing the testbed: QA

This model architecture is known for its 
use of attention mechanisms.

Many models using this architecture are 
named after Sesame street characters.

This model architecture achieves 41.8 
BLEU on WMT-14 English-French task.

Question

1

2

3

Transformer

ELMo

LSTM

?
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Designing the testbed: QA

Question

1

2
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Transformer
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This model architecture achieves 41.8 
BLEU on WMT-14 English-French task.
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Designing the testbed: QA
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Designing the testbed: Incremental QA

This model architecture is known for its 
use of attention mechanisms.

This model architecture achieves 41.8 
BLEU on WMT-14 English-French task.



Many models using this architecture are 
named after Sesame street characters.

70

This model architecture is known for its 
use of attention mechanisms.

This model architecture achieves 41.8 
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This model architecture is known for its 
use of attention mechanisms.

This model architecture achieves 41.8 
BLEU on WMT-14 English-French task.

ELMo

LSTM

Transformer

+10

Designing the testbed: Incremental QA
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This model architecture is known for its 
use of attention mechanisms.

This model architecture achieves 41.8 
BLEU on WMT-14 English-French task.

ELMo

LSTM

Transformer

+25

Designing the testbed: Incremental QA
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This model architecture is known for its 
use of attention mechanisms.

This model architecture achieves 41.8 
BLEU on WMT-14 English-French task.

ELMo

LSTM

Transformer

-25

Designing the testbed: Incremental QA
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Created by Adrien Coquet
from the Noun Project

Created by Vectorstall

Incremental QA: interface
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Created by Adrien Coquet
from the Noun Project

Created by Vectorstall

Guess: model prediction 
Created by Adrien Coquet
from the Noun Project

79

Incremental QA: interface



Guess: model prediction 

Alternatives: other possible answers & confidence scores 
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Created by Adrien Coquet
from the Noun Project

Created by Vectorstall

Created by Adrien Coquet
from the Noun Project

Incremental QA: interface



Guess: model prediction 

Alternatives: other possible answers & confidence scores 

Evidence: relevant training examples (kNN) 
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Created by Adrien Coquet
from the Noun Project

Created by Vectorstall

Created by Vectorstall

Created by Adrien Coquet
from the Noun Project

Incremental QA: interface
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Created by Adrien Coquet
from the Noun Project

Created by Vectorstall

Incremental QA: interface

Modular interface: each explanation  
can be turned on/off individually
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Created by Adrien Coquet
from the Noun Project

Created by Vectorstall

Incremental QA: interface

Modular interface: each explanation  
can be turned on/off individually

Allows for adjustment & adaptation.



1. Human+AI teams compete against each other 
2. Low stake, but high engagement 
3. Sequential, fine-grained comparison 
4. We can make the task arbitrarily difficult 
5. Near expert-level AIs

86

Incremental QA: gamification

+ +v.s.1 2
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Crowdworkers Experts
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Crowdworkers Experts



93

Crowdworkers Experts
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Learning to explain better
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Learning to explain better, selectively

What would         actually do?
1. Model the interpretation process 
2. Choose configuration for each decision
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Expected score given 
Question (x_i) 
Player (s_j) 
Explanation (config, t)
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2.1 Student Model

We use machine learning (ML) to learn a model
to estimate the student’s memory strength for ev-
ery item of information. In the context of flash-
cards, memory strength can be quantified by recall
probability: when presented with the front of a
flashcard, how likely will the student correctly re-
call the answer written on the back? Although the
groundtruth recall probability p is an unobserved
variable, we can get samples from the Bernoulli dis-
tribution with parameter p through testing. Given
an item, a student, and a point in time, denoted as
the triple hxi, sj , ti, the model f with parameters ✓
predicts the recall probability p. The objective is to
maximize likelihood of the binary outcome y:

✓̂ = argmax
✓2⇥

f(y|hxi, sj , ti; ✓) (1)

To learn the parameters ✓, we can use existing re-
view history data consisting of student-item-time
triples and correponding binary outcomes (Settles
and Meeder, 2016; Lindsey et al., 2014).

An accurate student model must take into ac-
count how memory strength reacts to interventions,
e.g. how strength increases after reviews and how it
decays with the passage of time. In particular, lag
time since the item xi was last reviewed, �(xi), is
a strong predictor of memory strength. The exact
form of memory strength as a function of lag time
is a topic of debate (Ebbinghaus, 1987; Rubin et al.,
1999; Averell and Heathcote, 2011). But most
forms of memory, with a few exceptions (Roedi-
ger, 2008), follow a monotonically decreasing for-
getting curve (Wixted and Carpenter, 2007): the
longer you wait to review, the more likely you are to
forget. One popular choice is to define recall proba-
bility as an exponential function of lag time (Settles
and Meeder, 2016; Tabibian et al., 2019; Hunziker
et al., 2019; Upadhyay et al., 2020)

f(�, ·; ✓) = 2��/h(·;✓) (2)

where · is a shorthand for the input triple, and half-
life h controls how fast the memory decays (Settles
and Meeder, 2016). In other words, the responsibil-
ity of adapting to each student and item is offloaded
to half-life function.2

Unlike previous work, we do not force our stu-
dent model to follow a specific forgetting curve.

2Half-life can use lag time as a feature. But to keep recall
estimation f an exponential function of lag-time �, half-life
h must be either a linear function of or independent of �.

# Description

1 Number of successful recalls.
2 Number of failed recalls.
3 Total number of reviews.
4 Average recall rate.

Table 1: Features used in our student model in addition
to BERT representations. We construct these features
separately for the student, the item, and the combina-
tion of the two; in total we have 12 features.

We parameterize the student model as a neural
network. Based on the universal approximation
theorem (Cybenko, 1989), it has the capacity to
approximate any form of forgetting curve.

Our student model combines manually-crafted
features from student behavioral data (Table 1)
with representations of the items content from a
pretrained neural language model (Devlin et al.,
2019). Compared to existing work using statisti-
cal NLP features such as lexeme tags (Settles and
Meeder, 2016), these neural language models pro-
vide a much richer representation for the items. We
train this model using logistic regression with the
objective in Equation 1 on previous review history
data collected from our platform.

Our student model allows us to introduce new
items in a manner attuned to the student’s current
state of knowledge. Unlike existing methods which
introduce new items by randomly sampling from
the pool of flashcards, our student model can pre-
dict the recall probability for flashcards that the
learner has not seen before. We can thus better cal-
ibrate the difficulty of new items for each student.

2.2 Teaching Policy

A teaching policy recommends items to re-
view based on estimations from the student
model (Mozer et al., 2019). Since a student’s en-
ergy is limited, the teaching policy needs to opti-
mize long-term retention within a budget. Policies
must balance the review of old items with the intro-
duction of new items (Novikoff et al., 2012). Ad-
ditionally, the objective depends on the student’s
requirements and preferences: whether the learning
is life-long or bounded, and the date of the final
assessment if there is one (Novikoff et al., 2012).

Regardless of the exact objective, teaching poli-
cies can be generally classified as either interval-
based or item-based.

Interval-based teaching policies directly pre-
dict the ideal lag time � to maximize long-term

Learning to explain better, selectively
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2.1 Student Model

We use machine learning (ML) to learn a model
to estimate the student’s memory strength for ev-
ery item of information. In the context of flash-
cards, memory strength can be quantified by recall
probability: when presented with the front of a
flashcard, how likely will the student correctly re-
call the answer written on the back? Although the
groundtruth recall probability p is an unobserved
variable, we can get samples from the Bernoulli dis-
tribution with parameter p through testing. Given
an item, a student, and a point in time, denoted as
the triple hxi, sj , ti, the model f with parameters ✓
predicts the recall probability p. The objective is to
maximize likelihood of the binary outcome y:

✓̂ = argmax
✓2⇥

f(y|hxi, sj , ti; ✓) (1)

To learn the parameters ✓, we can use existing re-
view history data consisting of student-item-time
triples and correponding binary outcomes (Settles
and Meeder, 2016; Lindsey et al., 2014).

An accurate student model must take into ac-
count how memory strength reacts to interventions,
e.g. how strength increases after reviews and how it
decays with the passage of time. In particular, lag
time since the item xi was last reviewed, �(xi), is
a strong predictor of memory strength. The exact
form of memory strength as a function of lag time
is a topic of debate (Ebbinghaus, 1987; Rubin et al.,
1999; Averell and Heathcote, 2011). But most
forms of memory, with a few exceptions (Roedi-
ger, 2008), follow a monotonically decreasing for-
getting curve (Wixted and Carpenter, 2007): the
longer you wait to review, the more likely you are to
forget. One popular choice is to define recall proba-
bility as an exponential function of lag time (Settles
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et al., 2019; Upadhyay et al., 2020)
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where · is a shorthand for the input triple, and half-
life h controls how fast the memory decays (Settles
and Meeder, 2016). In other words, the responsibil-
ity of adapting to each student and item is offloaded
to half-life function.2

Unlike previous work, we do not force our stu-
dent model to follow a specific forgetting curve.

2Half-life can use lag time as a feature. But to keep recall
estimation f an exponential function of lag-time �, half-life
h must be either a linear function of or independent of �.

# Description

1 Number of successful recalls.
2 Number of failed recalls.
3 Total number of reviews.
4 Average recall rate.

Table 1: Features used in our student model in addition
to BERT representations. We construct these features
separately for the student, the item, and the combina-
tion of the two; in total we have 12 features.

We parameterize the student model as a neural
network. Based on the universal approximation
theorem (Cybenko, 1989), it has the capacity to
approximate any form of forgetting curve.

Our student model combines manually-crafted
features from student behavioral data (Table 1)
with representations of the items content from a
pretrained neural language model (Devlin et al.,
2019). Compared to existing work using statisti-
cal NLP features such as lexeme tags (Settles and
Meeder, 2016), these neural language models pro-
vide a much richer representation for the items. We
train this model using logistic regression with the
objective in Equation 1 on previous review history
data collected from our platform.

Our student model allows us to introduce new
items in a manner attuned to the student’s current
state of knowledge. Unlike existing methods which
introduce new items by randomly sampling from
the pool of flashcards, our student model can pre-
dict the recall probability for flashcards that the
learner has not seen before. We can thus better cal-
ibrate the difficulty of new items for each student.

2.2 Teaching Policy

A teaching policy recommends items to re-
view based on estimations from the student
model (Mozer et al., 2019). Since a student’s en-
ergy is limited, the teaching policy needs to opti-
mize long-term retention within a budget. Policies
must balance the review of old items with the intro-
duction of new items (Novikoff et al., 2012). Ad-
ditionally, the objective depends on the student’s
requirements and preferences: whether the learning
is life-long or bounded, and the date of the final
assessment if there is one (Novikoff et al., 2012).

Regardless of the exact objective, teaching poli-
cies can be generally classified as either interval-
based or item-based.

Interval-based teaching policies directly pre-
dict the ideal lag time � to maximize long-term
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2.1 Student Model

We use machine learning (ML) to learn a model
to estimate the student’s memory strength for ev-
ery item of information. In the context of flash-
cards, memory strength can be quantified by recall
probability: when presented with the front of a
flashcard, how likely will the student correctly re-
call the answer written on the back? Although the
groundtruth recall probability p is an unobserved
variable, we can get samples from the Bernoulli dis-
tribution with parameter p through testing. Given
an item, a student, and a point in time, denoted as
the triple hxi, sj , ti, the model f with parameters ✓
predicts the recall probability p. The objective is to
maximize likelihood of the binary outcome y:

✓̂ = argmax
✓2⇥

f(y|hxi, sj , ti; ✓) (1)

To learn the parameters ✓, we can use existing re-
view history data consisting of student-item-time
triples and correponding binary outcomes (Settles
and Meeder, 2016; Lindsey et al., 2014).

An accurate student model must take into ac-
count how memory strength reacts to interventions,
e.g. how strength increases after reviews and how it
decays with the passage of time. In particular, lag
time since the item xi was last reviewed, �(xi), is
a strong predictor of memory strength. The exact
form of memory strength as a function of lag time
is a topic of debate (Ebbinghaus, 1987; Rubin et al.,
1999; Averell and Heathcote, 2011). But most
forms of memory, with a few exceptions (Roedi-
ger, 2008), follow a monotonically decreasing for-
getting curve (Wixted and Carpenter, 2007): the
longer you wait to review, the more likely you are to
forget. One popular choice is to define recall proba-
bility as an exponential function of lag time (Settles
and Meeder, 2016; Tabibian et al., 2019; Hunziker
et al., 2019; Upadhyay et al., 2020)

f(�, ·; ✓) = 2��/h(·;✓) (2)

where · is a shorthand for the input triple, and half-
life h controls how fast the memory decays (Settles
and Meeder, 2016). In other words, the responsibil-
ity of adapting to each student and item is offloaded
to half-life function.2

Unlike previous work, we do not force our stu-
dent model to follow a specific forgetting curve.

2Half-life can use lag time as a feature. But to keep recall
estimation f an exponential function of lag-time �, half-life
h must be either a linear function of or independent of �.

# Description

1 Number of successful recalls.
2 Number of failed recalls.
3 Total number of reviews.
4 Average recall rate.

Table 1: Features used in our student model in addition
to BERT representations. We construct these features
separately for the student, the item, and the combina-
tion of the two; in total we have 12 features.

We parameterize the student model as a neural
network. Based on the universal approximation
theorem (Cybenko, 1989), it has the capacity to
approximate any form of forgetting curve.

Our student model combines manually-crafted
features from student behavioral data (Table 1)
with representations of the items content from a
pretrained neural language model (Devlin et al.,
2019). Compared to existing work using statisti-
cal NLP features such as lexeme tags (Settles and
Meeder, 2016), these neural language models pro-
vide a much richer representation for the items. We
train this model using logistic regression with the
objective in Equation 1 on previous review history
data collected from our platform.

Our student model allows us to introduce new
items in a manner attuned to the student’s current
state of knowledge. Unlike existing methods which
introduce new items by randomly sampling from
the pool of flashcards, our student model can pre-
dict the recall probability for flashcards that the
learner has not seen before. We can thus better cal-
ibrate the difficulty of new items for each student.

2.2 Teaching Policy

A teaching policy recommends items to re-
view based on estimations from the student
model (Mozer et al., 2019). Since a student’s en-
ergy is limited, the teaching policy needs to opti-
mize long-term retention within a budget. Policies
must balance the review of old items with the intro-
duction of new items (Novikoff et al., 2012). Ad-
ditionally, the objective depends on the student’s
requirements and preferences: whether the learning
is life-long or bounded, and the date of the final
assessment if there is one (Novikoff et al., 2012).

Regardless of the exact objective, teaching poli-
cies can be generally classified as either interval-
based or item-based.

Interval-based teaching policies directly pre-
dict the ideal lag time � to maximize long-term
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Figure 2: Mean cumulative EW score over number of
questions under each condition by crowdworkers (top)
and experts (bottom). The selective condition gets the
highest score among all human-AI cooperative settings.

der each condition increases as the players answer
more questions. Among all human-AI cooperative
settings, the Selective condition is the best. Es-
pecially for experts, selective explanation by the
selector is better than both showing all explanations
and AI-only. Importantly, as our model acquires
more data for each user with more questions (and
as the user acclimatizes to their teammate), the gap
between Selective and Everything grows.

Without explanations, crowdworkers are much
worse than AI-only. With selective explanations,
crowdworkers are comparable to AI-only and
only slightly better than showing all explanations.

Under the Autopilot condition, if players
blindly follow the AI’s suggestion—buzz when the
Autopilot says so and provide the AI prediction
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Figure 3: Mean cumulative count of explanations over
time shown to experts. We compare the explanations
shown by the selector (top) and by random (bottom).
Based on the frequency, the selector learns a ranking of
explanations consistent with the effectiveness reported
in Feng and Boyd-Graber (2019): question highlights
are most effective, then evidence, then alternatives.

as the answer—they should match the AI-only
baseline. However, both experts and crowdwork-
ers lose to the AI-only condition. This indicates
that the other conditions evince a synergy: humans
are not simply blindly following AI suggestions.
Rather, the diverse and selective explanations al-
low the players to better decide when to follow and
when to use their own knowledge.

3.6 Evaluation: What does the selector show?

We are interested in what the selector learns to be
most effective and what it chooses to show to play-
ers. Figure 3 visualizes the evolving distribution of
configurations selected by the bandit selector and
the random selector.

First, the selector did not learn to show all expla-
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1. AIs can learn to explain better! 
2. How? Adjust level of details. 
3. Warm-starting the user model. 
4. Engagement is crucial

+

What did we learn?

Pragmatic Machine Explanations
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What’s next? Pragmatic summarization
We started from off-the-shelf post-hoc methods. 
Adjustment: which one to show. 
Limitation: flexibility. 
But it was an intentional choice to prioritize efficiency.

Pragmatic Summarizations
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1. Pragmatic inference 
2. Moral philosophy & ethics; agency

TMLR 23

What’s next? eory of pragmatic exp.
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1. Recommendation systems 
2. Radiologist support & training ICLR 23

What’s next? Imperfect knowledge users
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 Incentives for explanationsMethods for explanations 

Extrapolate beyond human capabilities? 
Supervise process, not outcome
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AIs that can 
do a task

AIs that help me 
at the task

Human 
Imitators

Self-improving 
Tools

Solution space of two different problems
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Truth-finding process for and with AI

Intelligence 
Augmentation 
for experts 

AI for science

AI safety 
Alignment 
AI x-risks
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Where we are going,  
we don’t need roads groundtruths!
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Learn to explain better

AI eval

“On the Opportunities and 
Risks of Foundation Models” 
by OpenAI.

Imitating humans

What color is the flower ?

Future work

ank you for listening!


