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1 AI should Explain Pragmatically

To explain is to help the listener understand. A pragmatist would interpret explanation as a means to
strengthen the listener’s understanding of the speaker’s worldview [9, 16, 21, 23]. Despite certain
oversimplifications, this pragmatic view emphasizes an important aspect of effective explanations:
to be compatible with the listener’s existing worldview and to provide digestible information. This
paper examines AI explanations from a pragmatic perspective and argue for explicit treatment of the
listener in the generation of explanations. In short, we propose that AI should explain pragmatically.

As an motivating example, consider using explanation as a recourse for a loan applicant who got
rejected by an AI system. What the applicant seeks in recourse is not so much why they are rejected,
but what they can do differently to get an approval. So using input attribution methods [13, 19] to list
features of the applicant as evidence for rejection is not effective, as it does not provide actionable
feedback. Instead, “increase annual income by $5k” or “reduce risky assets in portfolio” can be good
explanations, while “decrease age by 2” or “increase income ten fold” are not. Discerning good
explanations from bad ones requires knowing what the applicant can plausibly achieve, e.g., knowing
that increasing income by certain amount is feasible for some but not others. Whereas loan approval
is about predicting a single aspect about the applicant, i.e., the likelihood of repayment, it takes a
more comprehensive understanding of the applicant to generate a good explanation. So how can we
characterize the knowledge gap between these two problems? And what kind of data can inform the
AI system to generate more actionable explanations?

We build on the Rational Speech Act framework (RSA, [7]) and the level-k model of reasoning
in Keynesian game theory [17, 20]. We argue that existing AI explanations are not pragmatic,
and identify types of data that can inform AI pragmatic reasoning. Previous work on explanatory
dialogues [1, 11] also took inspiration from pragmatics literature since the need of modeling the
listener arises naturally from the dialogue format. In contrast, we study individual explanations
independent of their potential dialogue context. Our paper provides theoretical grounding for existing
work on adaptive explanations [1] and presents two concrete research projects on incorporating
pragmatics into XAI [15].

2 Existing AI Explanations are not Pragmatic

We use RSA to model AI explanations. RSA starts with a level-0 listener L0 who interprets a message
x literally according to a world model L. We can define L(x,w) = 1[x]w ·P (w), where the indicator
function 1[·] is one if the message x evalutes true in world state w and zero if otherwise. Using
L0 as the internal model of listener, we have a level-0 speaker S0 who simulates L0 and chooses
a message that’s maximally useful for L0. The utility of a message is typically measured by how
much it reduces L0’s information-theoretic uncertainty about the world state w: lnPL0

(w | u). A
level-1 listener L1 assumes that the speaker is rational and trying to optimize informativness, so L1

uses S0 as the internal model of the speaker, and infers the speaker’s intended meaning—the world
state being conveyed—following Bayes’s rule. Continuing the recursion, a level-1 speaker S1 then
uses L1 as the internal model and chooses an explanation that’s maximally useful for L1. The whole
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inference is conditioned on the w which is the world state according to the speaker.

PL0
(w | x) ∝ L(x,w)

PL1
(w | x) ∝ PS0

(x | w)P (w)

PS0
(x | w) ∝ exp{αS0

· lnPL0
(w | x)}

PS1
(x | w) ∝ exp{αS1

· lnPL1
(w | x)}

Pragmatic reasoning emerges at level-1 for both listener and speaker. The internal simulation of
level-1 pragmatic listeners allows them to draw inferences about a whole host of implicated meaning
beyond the literal meaning of a linguistic expression. For example, the listener can infer the speaker’s
intention, e.g., whether they are explaining objectively or trying to persuade. The inference leads to
biases in how the listener interprets the speaker: the same explanation can be perceived as trustworthy
or deceptive depending on the listener. The recursive self-reference in the level-1 pragmatic speaker’s
simulation (through the internal model based on L1) allows them to reason about and properly respond
to these biases of the listener. Level-1 speakers are self-aware in the sense that they understand the
listener’s biases about them and adjusts their explanations accordingly.

The lack of such self-awareness dictates that existing AI explanations do not qualify as level-1
speakers; they are not pragmatic. In a loose sense, the prediction model can be thought of as
approximating an aspect of the world model L by training on human labeled dataset, and the
explanation method resembles the level-0 speaker. Note that our categorization is a statement
about the speaker’s mechanics, not their product. In some cases, level-0 speaker might provide an
explanation that’s also optimal at level-1.

The main caveat of this framework arises from RSA’s oversimplifications. RSA was originally
introduced in the context of referential game which has many simplifying assumptions that don’t
directly translate to the scenarios of AI explaining to humans. RSA typically treats L as a common
grounding and assumes it is known to both parties, which is a reasonable assumption in referential
games. But this assumption is not generally true due to each person’s private knowledge and personal
beliefs. And we cannot claim with certainty that any such common grounding exists between human
and AI. So the L in the AI’s pragmatic reasoning is inevtitably an approximation of the human’s
world model, and the mismatch with the real human L is hard to quantify. It’s debatable, in particular,
whether modeling the pragmatic process is necessary as opposed to treating everything as part of
L and approximating it. Approximating the part of L that determines the interpretability of an
explanation can be thought of as learning an interpretability prior [10]. The linguistic community
has considered extending RSA with epistemic access [2], but those aren’t directly applicable to
our scenario. We believe our framework provides novel and important insights despite this caveat.
In particular, it offers a new perspective into data collection. As we discuss in the next section,
treating AI as a pragmatic speaker reveals fatal flaws in existing schemes of data collection and how
explanations are deployed.

3 Building Level-1 AI Explanations

We outline two proposals for building level-1 explanations. For each proposal, we examine an existing
method. These methods were not developed under a pragmatic framework, but we treat them as
speakers in RSA, and retrospectively identify their underlying level-0 assumptions. We discuss how
these hardcoded assumptions can be violated in reality, and as a antidote, how they can replaced by
learning from two types of level-1 data, one in the form of feedback and another in direct supervision.

3.1 Learning from L1 feedback with online optimization

The most direct way to build level-1 explainer is to collect level-1 feedback from L1, i.e., data
collected by deploying the explanations and observing how listeners react to them. To motivate
this approach, consider LIME [19], a representative method for input attribution, which explains a
prediction by highlighting regions of the input, e.g., phrases in a sentence for text classification or
regions in an image for object recognition. For each input, LIME assigns a saliency score to each of
its units (e.g., a word in a sentence, or an image segment) which measures the importance of that
unit for the prediction. Visualizations of LIME scores typically use a fixed colormap to translate
real-valued saliency scores to colors, and generates a heatmap over the input. A common choice
is a diverging colormap where blue represents positive contribution by the unit to the prediction,
red represents negative contribution, and white is neutral or no contribution; darker colors imply
stronger contribution [5, 12, 22]. This design choice makes an implicit level-0 assumption about
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how the listeners preceive color: that the listenes can distinguish these colors, that they make the
right associations (blue with positive, red with negative), and that they correctly associate shades of
color with numerical values. Whether these assumptions hold depends on an individual’s physical
limitation (e.g., colorblindness), cultural background [14], and personal experience [8]. This leads to
variance in the efficacy of explanations to different listeners [6]—a variance that, once controlled for,
can lead to improvement in overall explanation effectiveness.

Controlling for such variance requires first identifying an action space. Using the colormap example,
an action space is a set of options for one aspect of the colormap, such as the choice of two diverging
colors, or the mapping between real-valued numbers to the color darkness. Then, we can collect
stratified data of listener’s response to explanations in a user study, e.g., 50% users see blue-red and
50% see green-red. This type of data allows us to perform online optimization and choose the best
colormap for each user and improve explanation quality with more an more interaction with the user.

3.2 Learning from S1 supervision by thinking in AI’s shoes

Another line of work collects human rationale for classification problem, examplified by e-SNLI [3].
Annotators for those datasets are tasked to highlight words in the input that are most important for
the label and provide explanations.

But there is an important mismatch that’s not hard to identify under the pragmatics lens. In data
collection, the human annotators explain as if they are talking to a human listener who thinks the
speaker is also human. In RSA terms, the human annotator’s pragmatic inference uses an L which
encodes the social norm of human-human conversation. But when AIs explains, the human listener
knows that the speaker is AI, and their L will change accordingly. So by training the AI to mimic
explanation generated from the first process, we are putting our AI under a false impression that the
listeners will treat the same as a human speaker.

To fix this, we must think like an AI. When providing human explanation data, we must explain
as if the listener thinks they are talking to an AI. In RSA terms, we should construct explanations
where our approximation of L encodes the social context of human-AI conversation, rather than
human-human conversation. This can be done by providing an interface for human to simulate
AI [18]. The data created this way can provide direct S1 supervision for the AI as an level-1 speaker.

This proposal aligns nicely with the discussion on data granularity in robustness [4]. We ask the
question: what data should be treated as level-k? The answer hinges on what we expect a piece of
data to generalize: level-0 data is what we expect to generalize for all listeners, while level-1 data is
specific to each listener but also each speaker, since the whole inference is dependent on the world
state w according the speaker’s belief.

3.3 The social explainer

Can AIs generate level-1 explanations without becoming true level-1 progmatic reasoners? We think
yes, if the human listener is properly conditioned and the AI follows certain L. A naive solution
is to fool the human listener and create and illusion that they are talking to a human instead of an
AI, and make sure the AI can maintain such illusion—a capability that’s already within the reach of
existing AI systems. If we can do this successfully, the issues discussed in the two previous proposals
wouldn’t be a problem. But once the illusion is broken, the knowledge that we attempted to deceive
the human listener can lead to catestrophic outcomes. Perhaps a more honest and safe approach is to
inform the AI of its social perceptions, and ask it to explain accordingly.

4 Conclusion

RSA provides a starting point for modeling AI explanation as a pragmatic inference process. Examin-
ing AI explanations under the pragmatics lens reveal fatal flaws in how we currently train and deploy
AI explainers. To evolve from level-0 to level-1, we present two proposals for data collection and
training: learning from L1 feedback, and learning from S1 supervision.
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