Evaluating AI:
 From Crowdsourcing Truth
 To Truth-finding Processes

Shi Feng
University of Chicago

2019

2023

GPT - 4

Human detection of AI-generated article

What's the paper that talked about the risks of foundation models?

The paper you are referring to is "On the Opportunities and Risks of Foundation Models" by researchers at OpenAI.

This paper discusses the challenges, risks, and opportunities associated with the development and deployment of large-scale Al models, such as GPT-3.

Is the AI's answer true?

The paper you are referring to is "On the Opportunities and Risks of Foundation Models" by researchers at OpenAI.

This paper discusses the challenges, risks, and opportunities associated with the development and deployment of large-scale Al models, such as GPT-3.

Is the AI's answer true?

The paper you are referring to is "On the Opportunities and Risks of Foundation Models" by researchers at OpenAI.

On the Opportunities and Risks of Foundation Models

Center for Research on Foundation Models

Stanford University Human-Centered Artificial Intelligence

Human evaluation defines truth for AI

- What color is the flower?
- Yellow

Human evaluation defines truth for AI

Explanation informs human decision

Formal proofs

Legal arguments

Explanation as a truth-finding process

Explanation as a truth-finding process

A process to gather additional information to support human evaluation of AI outputs.

Training AI to explain itself

Capability assessment

Human-AI collaboration

Training
future AIs

Training AI to explain itself

1. Can AI explain by mimicking human?

EMNLP 18, 19, 22 ACL 19 NAACL 21 IUI 19
2. How can AI learn to explain better?

TACL 19 EMNLP 22 ICML 19,21 ICLR 23 TMLR 23

NLP ML HCI

Training AI to explain itself

1. Can AI explain by mimicking human?

EMNLP 18, 19, 22 ACL 19 NAACL 21 IUI 19
2. How can AI learn to explain better?

TACL 19
 EMNLP 22

ICML 19, 21
ICLR 23
TMLR 23

NLP ML HCI

Training AI to explain itself

1. Can AI explain by mimicking human?

EMNLP 18, 19, 22 ACL 19 NAACL 21 IUI 19

How do humans explain? By identifying difference makers

Q1: What color is the flower?
A1: Yellow

How do humans explain? By identifying difference makers

Q1: What color is the flower?
A1: Yellow

How do humans explain? By identifying difference makers

Q1: What color is the flower?
A1: Yellow

How do humans explain? By identifying difference makers

Q1: What color is the flower?
A1: Yellow

Q2: What color is the ?
A2: Yellow / black / green / white

How do humans explain? By identifying difference makers

Q1: What color is the flower?
A1: Yellow

Q2: What color is the ?
A2: Yellow / black / green / white

Q3: What color is flower?
A3: Yellow
Difference makers lead to large delta

Importance := delta in AI output

What color is the flower ? Yellow (0.827) color is the flower? Yellow (0.715)

Importance := delta in AI output

What color is the flower ? Yellow (0.827) color is the flower ? Yellow (0.715)
What is the flower? Yellow (0.530)

Importance := delta in AI output

What color is the flower ? Yellow (0.827) color is the flower? Yellow (0.715) What is the flower ? Yellow (0.530) What color the flower ? Yellow (0.820)

Importance := delta in AI output

What color is the flower? Yellow (0.827)
color is the flower? Yellow (0.715)
What is the flower? Yellow (0.530)
What color the flower? Yellow (0.820)
What color is flower? Yellow (0.826)
What color is the ? Yellow (0.700)

Importance := delta in AI output Seems to capture necessity

What color is the flower ? Yellow (0.827) color is the flower ? Yellow (0.715)
What is the flower? Yellow (0.530)
What color the flower ? Yellow (0.820) What color is flower ? Yellow (0.826)
What color is the ? Yellow (0.700)

What color is the flower ?

Importance := delta in AI output How about sufficiency?

What color is the flower? Yellow 0.827
What color is flower? Yellow 0.827

What color | color | flower? Yellow 0.825 |
| ---: | ---: |
| | flower? Yellow 0.702 |

- Unjustifiable confidence
- Inconsistent

Importance := delta in AI output How about sufficiency?

What color is the flower? Yellow 0.827
What color is flower? Yellow 0.827

What color | color | flower? Yellow 0.825 |
| ---: | ---: |
| | flower? Yellow 0.702 |

- Unjustifiable confidence
- Inconsistent

Seems odd. Does it generalize?

SQuAD
Context In 1899, John Jacob Astor IV invested \$100,000 for
Tesla to further develop and produce a new lighting
system. Instead, Tesla used the money to fund his
Colorado Springs experiments.
Original What did Tesla spend Astor's money on ?
Reduced did
Confidence $0.78 \rightarrow 0.91$
SNLI
Premise Well dressed man and woman dancing in the street
Original Two man is dancing on the street
Answer Contradiction
Reduced dancing
Confidence $0.977 \rightarrow 0.706$

Pathological high confidence on uninformative inputs

Removing unimportant feature leads to big delta in importance

What color is the flower ?	Yellow 0.827	
What color is	flower ?	Yellow 0.827
Whator	flower ?	Yellow 0.825

What color is the flower?

Model says Plausible
Model says Implausible

What color is the flower?
 What color is flower?

Model says Plausible
Model says Implausible

What color is the flower?

Model says Plausible

What color is flower?

Model says Implausible

What color is the flower?
 What is the flower?

Model says Plausible
Model says Implausible

What color is flower?

What color is the flower?

Model says Plausible

What color is
flower?

What
is the flower?

What color is the flower?

flower?

Model says Plausible

What color is
flower?

What
is the flower?

What color is the flower?

Model says Plausible

What color is
flower?
flower?

Model says Implausible

What is the flower?

What color is the flower?

 color flower?Model says Plausible

What color is
flower?
flower?

Model says Implausible

What is the flower?

What color is the flower?

Model says Plausible

What color is
flower?
flower?

Model says Implausible

What is the flower?
color flower?

What did we learn?

1. If models have these pathologies, we cannot expect reasonable explanations with this method.
2. It's expected that models have these issues. We argue that the intuitive way to extract explanations doesn't work with these models.
3. Reduced example is a caricature. Generalization to OOD is always hard.
4. It is indeed partly an issue of post-hoc method.

What did we learn?

Our intuitive notion of importance has complex mathematical implicationsproperties that humans might satisfy but AIs might not.

What did we learn?

1. Pathological high confidence

EMNLP 18 ICML 21
2. Poor consistency across counterfactuals

ICML 19

What's next?

1. Psychological expectation

2. Mathematical formulation

3. Validate AI \& design solutions

What's next?

EMNLP 19

NAACL 21

What's next?

- Humans cannot explain AI yet.
- AI explaining itself requires non-trivial extrapolation beyond human capability.

How can AIs learn to explain better?

Plausible

How can the applicant improve?

Implausible

Plausible

How can the applicant improve?

Education

Implausible

Plausible

Education

How can the applicant improve?

Implausible

Plausible

How can the applicant improve?

Gender, race

Implausible

Plausible

Education

How can the applicant improve?

Implausible

Gender, race

Plausible

Education

How can the applicant improve?

Experience, Role

Gender, race

Plausible

Education
Experience, Role

How can the applicant improve?

Implausible

Gender, race

Plausible

Education
Experience, Role

How can the applicant improve?

Country of origin

Gender, race

Plausible

Education
Experience, Role

How can the applicant improve?

Implausible

Gender, race
Country of origin

How can the applicant improve?

>25 years old
 Be two years younger

Plausible

Implausible

Plausible

>25 years old

How can the applicant improve?

Implausible

Be two years younger

Plausible

How can the applicant improve?

Get a masters degree

Implausible

Plausible

Get a masters degree Currently: bachelor

How can the applicant improve?

Implausible

Get a masters degree
Currently: high-school

Learning to explain better

Explanation is highly contextual.
Full context isn't available.
The plan:

1. Model the interpretation process.
2. Learn from feedback, not demonstration.

Learning to explain better

What would model?

1. Form of explanation
2. Level of details
3. Persuasiveness

Learning to explain better

What would

1. Form of explanation
2. Level of details

Online adaptation to real human users!

Designing the testbed Goal: better human-AI performance

Dream

Designing the testbed: QA

Question

	Question	Transformer	
1This model architecture is known for its use of attention mechanisms.	ELMo		
2Many models using this architecture are named after Sesame street characters.	LSTM		
3This model architecture achieves 41.8 BLEU on WMT-14 English-French task.			

Designing the testbed: QA

Question

	Question	Transformer	
1This model architecture is known for its use of attention mechanisms.	ELMo		
2Many models using this architecture are named after Sesame street characters.	LSTM		
3This model architecture achieves 41.8 BLEU on WMT-14 English-French task.			

Designing the testbed: QA

Question

| Question | Transformer | |
| :--- | :--- | :---: | :---: |
| 1This model architecture is known for its
 use of attention mechanisms. | ELMo | |
| 2Many models using this architecture are
 named after Sesame street characters. | LSTM | |
| 3This model architecture achieves 41.8
 BLEU on WMT-14 English-French task. | | |

Designing the testbed: QA

This model architecture is known for its use of attention mechanisms.

Many models using this architecture are named after Sesame street characters.

This model architecture achieves 41.8 BLEU on WMT-14 English-French task.

Designing the testbed: Incremental QA

This model architecture achieves 41.8 BLEU on WMT-14 English-French task. Many models using this architecture are named after Sesame street characters.
This model architecture is known for its use of attention mechanisms.

Designing the testbed: Incremental QA

This model architecture achieves 41.8 BLEU on WMT-14 English-French task. Many models using this architecture are named after Sesame street characters. This model architecture is known for its use of attention mechanisms.

Designing the testbed: Incremental QA

This model architecture achieves 41.8 BLEU on WMT-14 English-French task. Many models using this architecture are named after Sesame street characters. This model architecture is know, for its use of attention mechanisms Ω

Designing the testbed: Incremental QA

This model architecture achieves 41.8 BLEU on WMT-14 English-French task. Many models using this architecture are named after Sesame street characters. This model architecture is known for its use ottention mechanisms.

Designing the testbed: Incremental QA

This model architecture achieves 41.8 BLEU on WMT-14 English-French task. Many models using this architecture are named after Sesame street characters. This model architecture is known for its use ottention mechanisms.

$+10$

Designing the testbed: Incremental QA

This model architecture achieves 41.8 BLEU on WMT-14 English-French task. Many models using this architecture are named ffter Sesame street characters. This $\$ \mathrm{del}$ architecture is known for its use of attention mechanisms.

$+25$

Designing the testbed: Incremental QA

-25

This model architefture achieves 41.8 BLEU on WMT-14 ${ }^{\text {glish-French task. }}$ Many models using this architecture are named after Sesame street characters. This model architecture is known for its use of attention mechanisms.

Incremental QA: interface

Evidence

monetarists, the long-run curve is a vertical line at the natural rate of unemployment. For 10 points
reversed by Robert (*) Lucas who argued that it is the difference between real and expected inflation, not
, wrote a paper in 1958 titled "__The Relation between Unemployment and the Rate of Change of Money Wage
product and lowering the unemployment rate
Moving along the Phillips curve, this would lead to a

Incremental QA: interface

Alternatives		
\#	Guess	Score
1	Milton Friedman	0.1529
2	David Ricardo	0.1122
3	John Kenneth Galbrai	0.1100
4	Friedrich Hayek	0.0945
5	Joseph Stiglitz	0.0938

Question

Along with Edmund Phelps, he argued that real wages will adjust to provide an equilibrium between the supply and demand for labor, leading to a "natural rate" of unemployment. He coined the phrase
"Miracle of Chile" in

Evidence

monetarists, the long-run curve is a vertical line at the natural rate of unemployment. For 10 points
reversed by Robert (*) Lucas who argued that it is the difference between real and expected inflation, not
, wrote a paper in 1958 titled "__The Relation between Unemployment and the Rate of Change of Money Wage
product and lowering the unemployment rate Moving along the Phillips curve, this would lead to a

Incremental QA: interface

Incremental QA: interface

요N Guess: model prediction

Incremental QA: interface

Evidence

monetarists, the long-run curve is a vertical line at the natural rate of unemployment. For 10 points
reversed by Robert (*) Lucas who argued that it is the difference between real and expected inflation, not
, wrote a paper in 1958 titled "__The Relation between Unemployment and the Rate of Change of Money Wage
product and lowering the unemployment rate
Moving along the Phillips curve, this would lead to a

요 Guess: model prediction
§ Alternatives: other possible answers \& confidence scores

Incremental QA: interface

요N Guess: model prediction

「
官
Alternatives: other possible answers \& confidence scores
Evidence: relevant training examples (kNN)

Incremental QA: interface

Evidence
 monetarists, the long-run curve is a vertical line at the natural rate of unemployment. For 10 points
 reversed by Robert (*) Lucas who argued that it is the difference between real and expected inflation, not
 wrote a paper in 1958 titled "__The Relation between Unemployment and the Rate of Change of Money Wage
 product and lowering the unemployment rate
 Moving along the Phillips curve, this would lead to a

Modular interface: each explanation can be turned on/off individually

Incremental QA: interface

Buzz 0:27

Question
Along with Edmund Phelps, he argued that real wages will adjust to provide an equilibrium between the supply and demand for labor, leading to a "natural rate" of unemployment. He coined the phrase "Miracle of Chile" in

Guess: Milton Friedman

Evidence

monetarists, the long-run curve is a vertical line at the natural rate of unemployment. For 10 points
reversed by Robert (*) Lucas who argued that it is the difference between real and expected inflation, not
, wrote a paper in 1958 titled "__The Relation 'between Unemployment and the Rate of Change of Money Wage
product and lowering the unemployment rate
Moving along the Phillips curve, this would lead to a

Modular interface: each explanation can be turned on/off individually

Incremental QA: interface

\#	Guess	Score
$\mathbf{1}$	Milton Friedman	0.1529
2	David Ricardo	0.1122
3	John Kenneth Galbrai	0.1100
4	Friedrich Hayek	0.0945
5	Joseph Stiglitz	0.0938

Question
Along with Edmund Phelps, he argued that real wages will adjust to provide an equilibrium between the supply and demand for labor, leading to a "natural rate" of unemployment. He coined the phrase "Miracle of Chile" in

Guess: Milton Friedman

Modular interface: each explanation can be turned on/off individually

Incremental QA: interface

Question
Along with Edmund Phelps, he argued that real wages will adjust to provide an equilibrium between the supply and demand for labor, leading to a "natural rate" of unemployment. He coined the phrase "Miracle of Chile" in

Modular interface: each explanation can be turned on/off individually

Allows for adjustment \& adaptation.

Incremental QA: gamification

 感

1. Human +AI teams compete against each other
2. Low stake, but high engagement
3. Sequential, fine-grained comparison
4. We can make the task arbitrarily difficult
5. Near expert-level AIs

Alternatives

Highlights
Evidence

Crowdworkers

Experts

Crowdworkers

Experts

Alternatives

Crowdworkers

Experts

Alternatives

Highlights
Evidence

Crowdworkers

Experts

Learning to explain better

Learning to explain better, selectively

What would actually do?

1. Model the interpretation process
2. Choose configuration for each decision

Learning to explain better, selectively

Expected score given
Question (x_i)
Player (s_j)
Explanation (config, t)

Learning to explain better, selectively

Offline warm-start $f\left(y \mid\left\langle x_{i}, s_{j}\right\rangle ; \theta\right)$

Online
Bandit
$f\left(y \mid\left\langle x_{i}, s_{j}, t\right\rangle ; \theta\right)$

What did we learn?

1. AIs can learn to explain better!
2. How? Adjust level of details.
3. Warm-starting the user model.
4. Engagement is crucial

Pragmatic Machine Explanations

What's next? Pragmatic summarization

We started from off-the-shelf post-hoc methods.
Adjustment: which one to show.
Limitation: flexibility.
But it was an intentional choice to prioritize efficiency.

Pragmatic Summarizations

What's next? Theory of pragmatic exp.

1. Pragmatic inference TMLR 23
2. Moral philosophy \& ethics; agency

What's next? Imperfect knowledge users

1. Recommendation systems
2. Radiologist support $\&$ training ICLR 23

Extrapolate beyond human capabilities?

Supervise process, not outcome

Methods for explanations

Incentives for explanations

Solution space of two different problems

AIs that can do a task
AIs that help me at the task

Self-improving Tools

Truth-finding process for and with AI

Intelligence
 Augmentation
 for experts

AI for science

AI safety
 Alignment
 AI x-risks

Where we are going, we don't need roads groundtruths!

Thank you for listening!

AI eval

 "On the Opportunities and Risks of Foundation Models" by OpenAl.

Learn to explain better

Imitating humans

What color is the flower ?

Future work

